Для закрепления изученного материала предлагаю Вам выполнить несколько заданий:
Все возникшие вопросы Вы можете задать в комментариях к данному сообщению.
Желаю успехов!
Теоретический материал по теме блога.
Прежде чем приступить к решению квадратных уравнений, давайте вспомним, что же называется квадратным уравнением и какой оно принимает вид.
Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением.
Например, следующие уравнения являются квадратными:
Решим первое из этих уравнений, а именно x2 − 4 = 0.
Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.
Итак, в уравнении x2 − 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:
Получили уравнение x2 = 4. Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду x = a, где a — корень уравнения.
У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.
Чтобы решить уравнение x2 = 4, нужно ответить на вопрос при каком значении x левая часть станет равна 4. Очевидно, что при значениях 2 и −2. Чтобы вывести эти значения воспользуемся определением квадратного корня.
Число b называется квадратным корнем из числа a, если b2 = a и обозначается как
У нас сейчас похожая ситуация. Ведь, что такое x2 = 4? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень x прирáвнена к 4.
Тогда можно записать, что . Вычисление правой части позвóлит узнать чему равно x. Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем x = 2 и x = −2.
Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят арифметическое значение квадратного корня. В нашем случае на этапе когда записано выражение , перед следует поставить знак ±
Затем найти арифметическое значение квадратного корня
Выражение x = ± 2 означает, что x = 2 и x = −2. То есть корнями уравнения x2 − 4 = 0 являются числа 2 и −2. Запишем полностью решение данного уравнения:
Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:
В обоих случаях левая часть равна нулю. Значит уравнение решено верно.
Также для ознакомления/повторения данной темы предлагаю Вашему вниманию обучающие видеоролики.
Видео: решение квадратных уравнений.
Видео: способы решения квадратных уравнений.
Желаю успехов в обучении! Все возникшие вопросы по данной теме Вы можете задать в комментариях!
Для закрепления изученного материала предлагаю Вам выполнить несколько заданий: Задание 1. Задание 2. Квест Задание 3. Тест Все возни...